

100GE/OTU4 CFP LR4 EML 10km Optical Transceiver P/N: GCF-S101-LR4C

Features

- 4 channels full-duplex transceiver modules
- Transmission data rate up to 28Gbps per channel
- 4 channels EA-DFB-based LAN-WDM cooling transmitter
- 4 channels PIN ROSA
- 10 parallel electrical serial interface and AC coupling of CML signals
- Low power consumption < 9W
- Hot-pluggable CFP form-factor
- Up to reach 10km for G.652 SMF
- Duplex LC receptacles
- MDIO management interface
- Operating case temperature range 0°C to +70°C
- 3.3V power supply voltage
- RoHS-6 compliant (lead free)

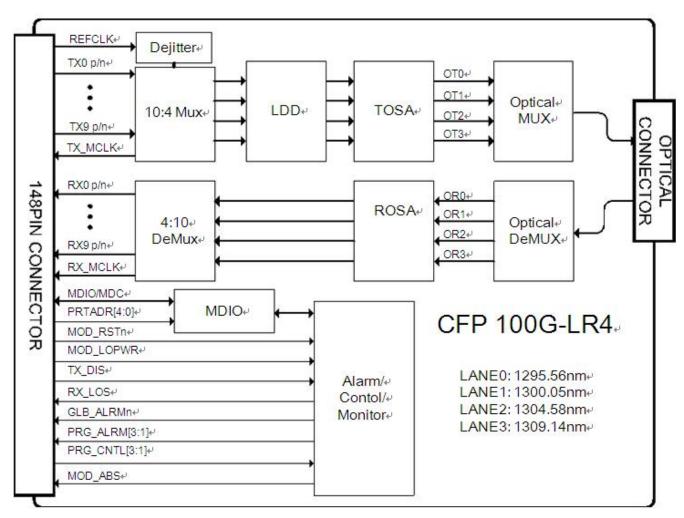
Applications

- IEEE 802.3ba 100GBASE-LR4
- ♦ OTN OTU4

Description

The Gigliaght 100GE/OTU4 CFP LR4 EML 10km optical transceiver (GCF-S101-LR4C) is a hot-pluggable form-factor module designed for high-speed optical networking application. The module is designed for 100-Gigabit Ethernet and OTN OTU4 applications with 100GBASE-LR4 compliant optical interface, CAUI electrical interface and MDIO module management interface.

The module converts 10-lane 11.2Gb/s electrical data streams to 4-lane LAN-WDM 28Gb/s optical output signal and 4-lane LAN-WDM 28Gb/s optical inputsignal to 10-lane 11.2Gb/s electrical data streams. This 10-lane 11.2Gb/s electrical signal is fully compliant with 802.3ba CAUI specification and allows FR4 host PCB trace up to 25cm. The high-performance cooled LAN-WDM EML transmitter and high-sensitivity PIN receiver provide superior performance for 100G applications up to 10km links and compliant optical interface with IEEE 802.3ba Clause 88 100GBASE-LR4 requirements.



深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Unit	Min	Мах
Storage Temperature Range	Ts	°C	-40	+85
Relative Humidity	RH	%	5	85
Power Supply Voltage	Vcc	V	-0.5	+ 3.6
Operating Case Temperature Range	Тс	°C	-5	75
Receiver Damage Threshold Per Lane	Pdag	dBm	+5.5	

Recommended Operating Conditions

Parameter	Symbol	Unit	Min	Тур	Max
Operating Case Temperature Range	Тс	oC	0		70
Power Supply Voltage	Vcc	V	3.2	3.3	3.4
Data rate		Gb/s		103.125	112

Products Characteristics(tested under recommended operating conditions)

Parameter	Symbol	Unit	Min	Тур	Мах	Notes
	Voltage Sup	oply Elec	trical Charac	teristics		
Supply Current Tx Section	Rx Section	А	-	-	3	1
Dower Supply Noise	Vrie				2%	DC-1MHz
Power Supply Noise	Vrip				3%	1-10MHz
Dissipation Class2	Pw	W			9	
Low Power Dissipation	Plow	W			2	
Inrush Current n 2	I-inrush m/	A/usec			50	
Turn-off Current Class2	I-turnoff m	A/usec	-50			
	Different Sig	gnal Elec	trical Charac	teristics	1	
Single Ended Data Input S	mV	55 -		525		
Single Ended Data Output	mV	180 -		385		
Differential Signal Resistance	Output	Ω	80		120	
Differential Signal Resistance	Input	Ω	80		120	
	3.3V LVCM	OS Elect	rical Charact	eristics		
Input High Voltage	3.3VIH	V	2.0		Vcc+0.3	
Input Low Voltage	3.3VIL	V	-0.3 -		0.8	
Input Leakage Current	3.3IIN	uA	-10		+ 10	
Output HighVoltage(Iон=100∪A)	3.3VOH	V	Vcc-0.2 -		-	
Output Low Voltage (Ioi = 100∪A)	3.3VOL	V			0.2	
Minimum Pulse Width of Control Pin Signal	T_CNTL	us	100			

www.gigalight.com

1.2V LVCMOS Electrical Characteristics										
Input High Voltage	1.2VIH	V	0.84		1.5					
Input Low Voltage	1.2VIL	V	-0.3		0.36					
	4 0 1 1 1		100		. 100					
Input Leakage Current	1.2IIN	uA	-100		+ 100					
Output HighVoltage	1.2VOH		1.0		1.5					
Output Low Voltage	1.2VOL 1.2IOH	-	-0.3		0.2 -4					
Output High Current Output Low Current	1.2IOH 1.2IOL	mA mA	+4		-4					
Input Capacitance	Ci	pF			10					
Optical Transmitter Characteristics										
Signaling Rate for Each	-			25.78125+/-						
Lane (100GbE)			-	100ppm						
Signaling Rate for Each		Gbps		27.95249+/-						
Lane (OTU4)										
	<u> </u>		4004.50	20ppm	4000.50					
	入1	_	1294.53	1295.56	1296.59					
	λ2		1299.02	1300.05	1301.09					
Four Lane Wavelength	入3	nm	1303.54	1304.58	1305.63					
Range	入4	– nm	1308.09	1309.14	1310.19					
Side Mode Suppression Ratio	SMSR	dB	30		-					
Total Average Launch Power 〔100GbE〕			-		10.5					
Total Average Launch Power(OTU4)	Pt	dBm			8.9					
Average Launch Power for Each Lane(100GbE)	Ра	dBm	-4.3		+4. 5	2				
Average Launch Power for Each Lane(OTU4)	Γa	dbm	-2.5		+2.9					
Optical Modulation Amplitude for Each Lane	OMA	dBm	-1.3		4.5	3				
Transmitter and Dispersion Penalty for Each Lanes(100GbE)		TDP			2.2					
Transmitter and Dispersion Penalty for Each Lanes(OTU4)		TDP			1.5					
Average Launch Power of Off Transmitter for Each Lanes	Poff	dBm	-		-30					

Extinction Ratio (100GbE)	EX	dB	4						
Extinction Ratio (OTU4)	EA	uв	7						
Maximum channel power difference		dB			5				
RIN20OMA		dB/Hz			-130				
Optical Return Loss Tolerance		dB			20				
Transmitter Reflectance		dB			-12	4			
Eye Diagram Compliant with IEEE 802.3ba-2010/G959.1)									
Optical Receiver Characteristics									
Receive Rate for Each Lane(100GbE) Receive Rate for EachLane(OTU4)		Gbps		25.78125+/- 100ppm 27.95249+/- 20ppm					
	入1		1294.53	1295.56	1296.59				
	λ2		1299.02	1300.05	1301.09				
Four Lane Wavelength	λ3	nm	1303.54	1304.58	1305.63				
Range	入4		1308.09	1309.14	1310.19				
Overload Input Optical Power	Pmax	dBm	4.5			5			
Total Input Optical Power(OTU4)	Pt	dBm			8.9				
Average Receive Power for Each Lane(100GbE)	Pin	dBm	-10.6		4.5	6&7			
Average Receive Power for Each Lane(OTU4)					2.9				
Receive Power In OMA for Each Lane	PinOMA	dBm	-		4.5				
Difference in Receive Power between Any Two		dBm	-		5.5				
Receiver Sensitivity in OMA for Each	Pmin	dBm			-8.6	8			
Receiver Sensitivity for Each Lane(OTU4)					-10.3	9			

Optical Interconnection Design Innovator

StressedReceiver Sensitivity in OMA for Each	dBm		-6.8	10&11
Los Assert	dBm	-20	-15	
Los De-assert	dBm		-14	
Los Hysteresis	dBm	0.5		
Chromatic Dispersion	Ps/nm	-28.5	+9.5	
Maximum reflectance of optical network element	dB		-26	
Delay Group differencial	ps		8	

Note1. The supply current includes CFP module's supply current and test board working current.

Note2. Average launch power ,each lane(min) is informative and not the principal indicator of signal strength.

A transmitter with launch power below this value cannot be compliant;

however, a value above this does not ensure compliance

Note3. Even if the TDP<1dB, the OMA(min) must exceed this value

Note4. Transmitter reflectance is defined looking into the transmitter

Note5. The receiver shall be able to tolerate , without damage, continuous exposure to an optical input signal having this average power level

Note6. The average receive power , each lane (max) for 100GBASE-ER4 is larger than the 100BASE-ER4 transmitter value to allow compatibility with 100BASE-LR4 units at short distances

Note7. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance

Note8. Receiver sensitivity (OMA), each lane (max) is informative

Note9. Measured with PRBS 231-1 for BER=10-5. The BER for the OTU4 application is required to be met only after FEC has been applied.

Note10. Measured with conformance test signal at TP3 for BER=10-12 Note11. conditions of stressed receiver sensitivity test: vertical eye closure penalty for each lane is 1.8dB;stressed eye J2 jitter for each lane is 0.3UI; stressed eye J9 jitter for each lane is 0.47UI.

Hardware Control Pins

The CFP Module support real-time control functions via hardware pins, listed in the following table: Hardware Control Pins

Pin#	Symbol	Description	I/0	Logic	Н	H L Pull-			
30	PRG_CNTL1	Programmable Control 1 MSADefault: TRXIC_RST n , TX&RX ICs reset, "0 ″ :reset; "1"	I	3.3V LVCMOS	per CED MSA		per CFP MSA		Pull-Up Note1
31	PRG_CNTL2	Programmable Control 2 MSADefault : Hardware Interlock LSB	Ι	3.3V LVCMOS	Mana Inte	gement erface ification	Pull-Up Note1		
32	PRG_CNTL3	Programmable Control 3 MSA Default:Hardware Interlock MSB	I	3.3V LVCMOS			Pull-Up Note1		
36	TX_DIS	Transmitter Disable	Ι	3.3V LVCMOS	Disable	Enable	Pull-Up Note1		
37	MOD_LOPW R	Module Low Power Mode	I	3.3V LVCMOS	Low Power	Enable	Pull-Up Note1		
39	MOD_RSTn	Module Reset(Invert)	I	3.3V LVCMOS	Enable	Reset	Pull-Down Note2		

Hardware Alarm Pins

The CFP Module supports alarm hardware pins listed in the following table: Hardware Alarm Pins

Pin#	Symbo1	Description	I/0	Logic	Н	L	Pull-up/down
33	prg_alrm1	Programmable Alarm 1 MSADefault:HIPWR_ON	0	3.3V LVCMOS			
34	PRG ALRM 2	Programmable Alarm 2MSA default:MOD_READY , Ready State has been reached	Ο	3.3V LVCMOS		ligh per ocument	
35	PRG ALRM3	Programmable Alarm 3 MSA Default: MOD FAULT	0	3.3V LVCMOS	-		
38	MOD_ABS	Module Absent	0	3.3V LVCMOS	Absent	Present	Pull-Down Note1

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

Optical Interconnection Design Innovator

40	RX_LOS	Receiver Loss of Signal	0	3.3V LVCMOS	Loss of Signal	OK		
----	--------	-------------------------	---	----------------	-------------------	----	--	--

Note1: Pull-Up resistor (4.7KOhm to 10 KOhm) is located within the CFP module Note2: PuH-Down resistor (4.7KOhm to 10 kOhm) is located within the CFP module

Management Interface Pins(MDIO)

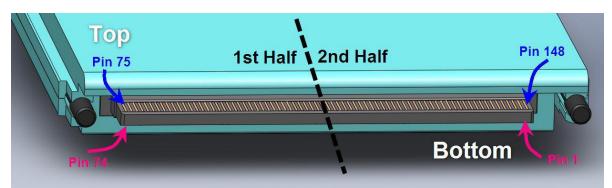
The CFP Module supports alarm, control and monitor functions via an MDIO bus. The CFP MDIO pins are listed in the following table: Management Interface Pins

Pin#	Symbol	Description	I/0	Logic	Н	L	Pull-up/down
41	GLB_ALRMn	Global Alarm	I	3.3V	Ok	Alarm	
				LVCMOS			
47	MDIO	Management Data	I/0	1.2V			
		Input Output		LVCMOS			
		Bi-Directional Data					
48	MDC	MDIO Clock	I	1.2V			
				LVCMOS			
46	PRTADR0	MDIO Physical Port	I	1.2V	per	MDIO	
		address bit0		LVCMOS	docur	nent[5]	
45	PRTADR1	MDIO Physical Port	Ι	1.2V			
		address bit1		LVCMOS			
44	PRTADR2	MDIO Physical Port	1	1.2V			
		address bit2		LVCMOS			
43	PRTADR3	MDIO Physical Port	Ι	1.2V			
		address bit3		LVCMOS			
42	PRTADR4	MDIO Physical Port	I	1.2V			
		address bit4		LVCMOS			

Hardware Signaling Pin Timing Requirements

Parameter	Symbol	Min	Max	Unit	Notes&Conditions
Hardware MOD_LOPWR assert	t_MOD_LOPWR_a ssert		1	ms	Application Specific May depend on current state Condition when signal is applied .See
TX Disable Assert Time	T_off		100	US	

Timing Parameters for CFP hardware Signal Pins are listed in the following table.

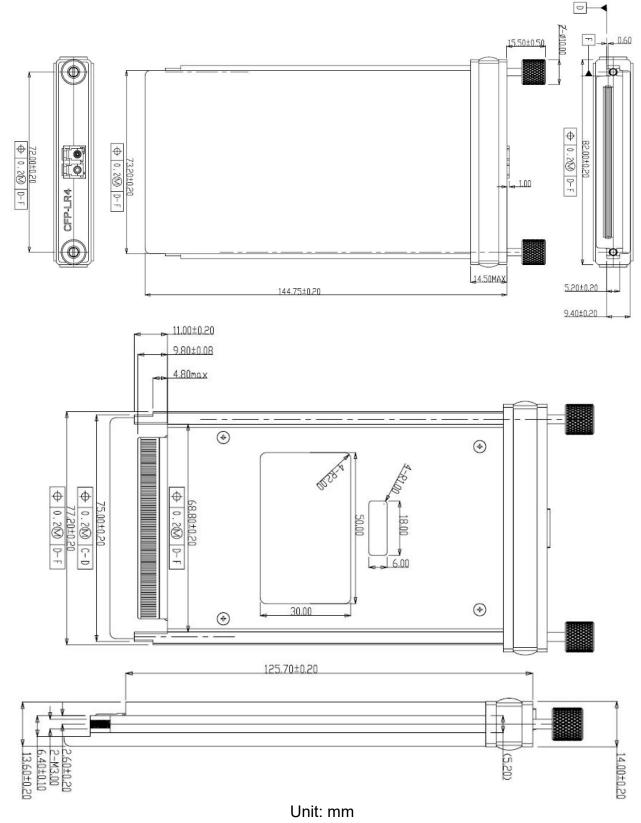

high

peed Electri Reference Clock			eristics			
		Min	Тур	Max	Unit	Notes
Impedance	Zd	80	100	120	Q	
Frequency			161.1328125/644.53125		MHz	1/64 or 1/16 of electrical lane rate
Frequency	∆f	-100		100	nnm	For Ethernet applications
Stability		-20		20	ppm	For Telecom applications
Output Differential Voltage	VDIFF	400		1200	mV	Peak to Peak Differential
RMS jitter1-2	0			10	ps	Random Jitter Over frequency band of 10KHz <f<10mhz< td=""></f<10mhz<>
Clock Duty Cycle		40		60	%	
Clock Rise/Fall	tr/f	200		1250	n 0	1/64 of electrical lane rate
Time 10%/90%	u/I	50		315	ps	1/16 of electrical lane rate

Note1: The term "40GBASE_FR" is the 40GbE serial optical interface in the task force phase at IEEE-SA at the time of this publication. Also, 1/16 of optical lane clock is recommended for TX_MCLK and RX_MCLK Note2: Multi-protocol modules are recommended to adopt the clock rate rate used in Telecom applications

Optional Transmitter and Receiver Monitor Clock Characteristics

		Min	Тур	Max	Unit	Notes
Impedance	Zd	80	100	120	Q	
Frequency					MHz	1/8 of Network lane rate
Output	VDI	400		1200	mV	Peak to Peak Differential
Differential	FF					
Voltage						
Clock Duty Cycle		40		60	%	


Pad Layout of the CFP module

CFP Optical Interface lanes and Assignment

shows the orientation of the multimode fiber facets of the optical connector.

Mechanical Dimensions

Optical Interconnection Design Innovator

Mechanical Specifications

Ordering information

Part Number	Product Description			
GCF-S101-LR4C	100GE/OTU4 CFP LR4 EML, 112Gb/s, up to reach 10km for G.652 SMF			

1. 100G Ethernet

2. OTN OTU4

Standards

Compliant with IEEE 802.3ba Compliant with CFP MSA hardware specification Compliant with CFP MSA management specification Compliant with ITU-T G.709/Y.1331 Compliant with RoHS&WEEE

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: <u>sales@gigalight.com</u> Web : <u>https://www.gigalight.com/</u>