

100GE/OTU4 CFP4 SR4 100m Optical Transceiver P/N: GF4-M101-SR4C

Features

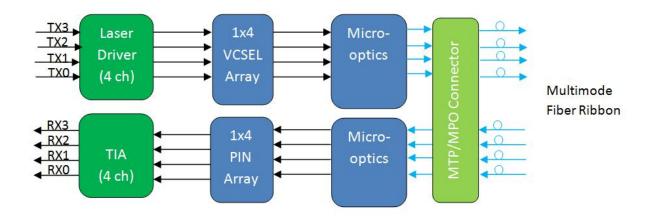
- 4 channels full-duplex transceiver modules
- Transmission data rate up to 28Gbps per channel
- 4 channels 850nm VCSEL array
- 4 channels PIN photo-detector array
- ♦ Low power consumption < 2.5W
- Up to 28Gb/s data rate per channel
- Hot-pluggable CFP4 form-factor
- Maximum link length of 70m on OM3 Multimode Fiber (MMF) and 100m on OM4 MMF
- Single MPO connector receptacle
- MDIO management interface
- Operating case temperature range: 0°C to +70°C
- 3.3V power supply voltage
- RoHS-6 compliant (lead free)

Applications

- IEEE 802.3bm 100GBASE-SR4
- ♦ OTN OTU4
- 128G (4x32G) Fibre Channel

Description

The Gigalight 100GE/OTU4 CFP4 SR4 100m optical transceiver (GF4-M101-SR4C) is a hot-pluggable module designed for optical communication applications compliant to the IEEE 802.3bm 100GBASE-SR4, OTN OTU4, and 128G (4x32G) Fibre Channel standards. The module converts 4 input channels of 28Gb/s electrical data to 4 channels of VCSEL optical signals over 4 multimode fibers for 112Gb/s optical transmission. Reversely, on the receiver side, the module receives 4 channels of VCSEL optical signals over 4 multimode fibers and then converts them to 4 output channels of electrical data.


The high-speed VCSEL transmitters and high-sensitivity PIN receivers provide superior performance for 100G applications up to 100m links over OM4 multimode fibers and compliant to optical interface with IEEE

802.3bm Clause 95 100GBASE-SR4 requirements.

This product contains an MTP/MPO optical connector for the optical interface and a 56-pin connector for the electrical interface. Figure 1 shows the functional block diagram of this product.

MDIO Interface

The CFP4 module supports the MDIO interface specified in IEEE 802.3bm Clause 45. It supports alarm, control and monitor functions via hardware pins and via an MDIO bus. Upon module initialization, these functions are available. CFP4 MDIO electrical interface consists of 6 wires including 2 wires of MDC and MDIO, as well as 3 Port Address wires, and the Global Alarm wire. The CFP4 uses pins in the electrical connector to instantiate the MDIO interface as listed in Table 1. MDIO Interface Pins.

Table 1. MDIO Interface Pins

PIN	Symbol	Description		Logic	"H"	"L"
	GLB_ALRM					
13	n	Global Alarm	0	3.3V LVCMOS	ОК	Alarm
18	MDIO	Management Data Input Output Bi-Directional Data	I/O	1.2V LVCMOS		
17	MDC	MDIO Clock	Ι	1.2V LVCMOS		
19	PRTADR0	MDIO port address bit 0	I	1.2V LVCMOS		
20	PRTADR1	MDIO port address bit 1	I	1.2V LVCMOS	per MDIO	
21	PRTADR2	MDIO port address bit 2	I	1.2V LVCMOS	document	

Pin Assignment and Description

The CFP4electrical connector has 56 pins, which are arranged in top and bottom rows. The pin orientation is shown in Figure 2 and the pin map is shown in Table 2. The detailed description of the bottom side pins from pin 1 through pin 28 is shown in Table 3 while the description of the top side pins is shown in Table 4.

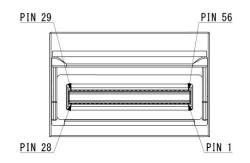


Figure 2. CFP4 Connector Pin Map Orientation

Та	abl	e	2.	Pin	Мар
	uN		_		map

	CFP4
	Bottom
1	3.3V_GND
2	3.3V_GND
3	3.3V
4	3.3V
5	3.3V
6	3.3V
7	3.3V GND
8	3.3V GND
9	VND_IO_A
0	VND_IO_B
1	TX_DIS (PRG_CNTL1)
2	RX_LOS (PRG_ALRM1)
3	GLB_ALRMn
4	MOD_LOPWR
5	MOD_ABS
6	MOD_RSTn
17	MDC
8	MDIO
9	PRTADR0
20	PRTADR1
21	PRTADR2
22	VND_IO_C
23	VND_IO_D
24	VND_IO_E
25	GND
26	(MCLKn)
27	(MCLKp)
28	GND

	CFP4	
	Тор	
56	GND	
55	TX3n	
54	ТХ3р	
53	GND	
52	TX2n	
51	TX2p	
50	GND	
49	TX1n	
48	TX1p	
47	GND	
46	TX0n	
45	TX0p	
44	GND	
43	(REFCLKn)	
42	(REFCLKp)	
41	GND	
40	RX3n	
39	RX3p	
38	GND	
37	RX2n	
36	RX2p	
35	GND	
34	RX1n	
33	RX1p	
32	GND	
31	RX0n	
30	RX0p	
29	GND	

Тор А	
GND	
TX0n	
ТХОр	
GND	
TX1n	
ТХ1р	
GND	
TX2n	
TX2p	
TX2n TX2p GND	
TX3n	
ТХ3р	
GND	
(REFCLKn (REFCLKp))
(REFCLKp))
GND	
RX3p	
RX3n	
GND RX2p	
RX2n	
GND	
RX1p RX1n	
GND	
RX0p	
RX0n	
GND	

CEP4

MCLK = TX_MCLK + RX_MCLK (Optional)

PIN	Name	I/O	Logic	Description
1	3.3V_GND			3.3V Module Supply Voltage Return Ground, can be separated or tied together with Signal Ground
2	3.3V_GND			GND
3	3.3V			3.3V Module Supply Voltage
4	3.3V			3.3V Module Supply Voltage
5	3.3V			3.3V Module Supply Voltage
6	3.3V			3.3V Module Supply Voltage
7	3.3V_GND			GND
8	3.3V_GND			GND
9	VIND_IO_A	I/O		Module Vendor I/O A. Do Not Connect
10	VIND_IO_B	I/O		Module Vendor I/O B. Do Not Connect
11	TX_DIS (PRG_CNT L1)	Ι	LVCMOS w/PUR	Transmitter Disable for all lanes. "1" or NC Transmitter disabled; "0": transmitter enabled.(Optionally configurable as Programmable Control1 after Reset)
12	RX_LOS (PRG_ALR M1)	0	LVCMOS w/PUR	Receiver Loss of Optical Signal. "1": low optica signal; "0":normal condition (Optionally configurable as Programmable Alarm1 after Reset)
13	GLB_ALR Mn	0	LVCMOS	Global Alarm. "0":alarm condition in any MDIO Alarm register; "1": no alarm condition, Open Drain, Pull up Resistor on Host
14	MOD_LOP WR	I	LVCMOS w/PUR	Module Low Power Mode. "1" or NC: module in low power (safe) mode; "0":power-on enabled
15	MOD_ABS	0	GND	Module Absent. "1" or NC: module absent; "0" module present, Pull up resistor on Host
16	MOD_RST n	Ι	LVCMOS w/PDR	Module Reset. "0": resets the module; "1" or NC module enabled, Pull down Resistor in Module
17	MDC	I	1.2V CMOS	Management Data Clock (electrical specs as pe IEEE Std 802.3-2012)
18	MDIO	I/O	1.2V CMOS	Management Data I/O bi-directional data(electrica specs as per IEEE Std 802.3ae-2008 and ba-2010)
19	PRTADR0	Ι	1.2V CMOS	MDIO Physical Port address bit 0
20	PRTADR1	Ι	1.2V CMOS	MDIO Physical Port address bit 1
21	PRTADR2	Ι	1.2V CMOS	MDIO Physical Port address bit 2
22	VND_IO_C	I/O		Module Vendor I/O C. Do Not Connect
23	VND_IO_D	I/O		Module Vendor I/O D. Do Not Connect

Table 3. Definition of the Bottom Side Pins from Pin 1 through Pin 28

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

24	VND_IO_E	I/O		Module Vendor I/O E. Do Not Connect
25	GND			GND
26	(MCLKn)	0	CML	For optical waveform testing. Not for normal use
27	(MCLKp)	0	CML	For optical waveform testing. Not for normal use
28	GND			GND

Table 4. Definition of Top Side Pins

PIN	Name	PIN	Name
29	GND	43	(REFCLKp)
30	RX0p	44	GND
31	RX0n	45	TX0p
32	GND	46	TX0n
33	RX1p	47	GND
34	RX1n	48	TX1p
35	GND	49	TX1n
36	RX2p	50	GND
37	RX2n	51	TX2p
38	GND	52	TX2n
39	RX3p	53	GND
40	RX3n	54	ТХ3р
41	GND	55	TX3n
42	(REFCLKn)	56	GND

Optical Interface Lanes and Assignment

Figure 3 shows the orientation of the multi-mode fiber facets of the optical connector. Table 5 provides the lane assignment.

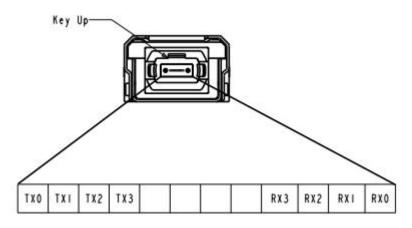


Figure 3. Outside View of the CFP4 Module MPO Receptacle

Table5: Lane Assignment

Fiber	Lane
#	Assignment
1	RX0
2	RX1
3	RX2
4	RX3
5,6,7,8	Not used
9	TX3
10	TX2
11	TX1
12	TX0

Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit	Notes
Storage Temperature	Ts	-40	85	degC	
Relative Humidity (non-condensation)	RH		85	%	
Operating Case Temperature	T _{OP}	0	70	degC	
Supply Voltage	Vcc	-0.5	3.6	V	
Voltage on LVTTL Input	Vilvttl	-0.5	VCC3+0.3	V	
LVTTL Output Current	lolvttl		15	mA	
Voltage on Open Collector Output	Voco	0	6	V	
Damage Threshold, each Lane	THd	3.4		dBm	1

Notes:

1. PIN receiver.

Recommended Operating Conditions and Supply Requirements

Parameter	Symbol	Min	Typical	Мах	Unit	Notes
Operating Case Temperature	T _{OP}	0		70	degC	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

Data Rate, each Lane			25.78125		Gbps	1
Data Rate, each Lane			27.9525		Gbps	2
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
						DC-
				2	%	1MHz
Power Supply Noise	Vrip					1-
	VIP			3	%	10MHz
Link Distance (OM3 MMF)	D1			70	m	
Link Distance (OM4 MMF)	D2			100	m	

Notes:

- 1. 100GBASE-SR4.
- 2. OUT4 with FEC.

Electrical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes		
Power Consumption				2.5	W			
Supply Current	lcc			800	mA			
Low Power Mode Power				1	w			
Dissipation				1	VV			
Transmitter (each Lane)								
Single-ended Input Voltage		0.2			v	Referred to TP1		
Tolerance (Note 1)		-0.3		4.0	V	signal common		
AC Common Mode Input	45					DMO		
Voltage Tolerance		15			mV	RMS		
Differential Input Voltage								
Swing Threshold		50			mVpp	LOSA Threshold		
Differential Input Voltage		100		700				
Swing	Vin,pp	190		700	mVpp			
Differential Input Impedance	Zin	90	100	110	Ohm			
	Receiver (each Lane)							

www.gigalight.com

Optical Interconnection Design Innovator

Single-ended Output Voltage		-0.3		4.0	V	Referred to signal common
AC Common Mode Output Voltage				7.5	mV	RMS
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	
Termination Mismatch at 1MHz				5	%	

Notes:

1. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

Optical Characteristics

Parameter	Symbol	Min	Typical	Мах	Units	Notes		
Transmitter								
Center Wavelength	λc	840	850	860	nm			
RMS Spectral Width	$\Delta \lambda_{rms}$			0.6	nm			
Average Launch Power, each Lane	Pavg	-8.4		2.4	dBm			
Optical Modulation Amplitude (OMA), each Lane	Рома	-6.4		3.0	dBm	1		
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			4.0	dB			
Launch Power in OMA minus TDEC, each Lane		-7.3			dBm			
Transmitter and Dispersion Eye Closure (TDEC), each Lane				4.3	dB			
Extinction Ratio	ER	2.0			dB			
Optical Return Loss Tolerance	TOL			12	dB			
Encircled Flux		≥86% at 19um ≤ 30% at 4.5um						
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}, 5×10 ⁻⁵		{0.3,0.38,0.45,0.35,0.41,0.5 }			2			

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

www.gigalignt.com				opoo	di mitoroom	rection Desig	grimmorator
hits/sample							Notes:
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm		ר די
	Rec	eiver			1	1	C
Center Wavelength	λc	840	850	860	nm		c t
Damage Threshold, each Lane	TH₄	3.4			dBm	3	A
Average Receive Power, each Lane		-10.3		2.4	dBm		r r s
Receiver Reflectance	R _R			-12	dB		e t
Receive Power (OMA), each Lane				3.0	dBm		r ii r
Stressed Receiver Sensitivity (OMA), each Lane				-5.2	dBm	4	V U
LOS Assert	LOSA	-30			dBm		e c
LOS Deassert	LOSD			-12	dBm		1 h e 2. S
LOS Hysteresis	LOSH	0.5	2		dB		e F
Conditions of S	Stress Recei	ver Sensit	ivity Test (Note 5):			1 L 5 b
Stressed Eye Closure (SEC), Lane under Test			4.3		dB		c 3. 1 r
Stressed Eye J2 Jitter, Lane under Test			0.39		UI		e e s
Stressed Eye J4 Jitter, Lane under Test				0.53	UI		li b e
OMA of each Aggressor Lane			3		dBm		ti t
Stressed receiver eye mask definition {X1, X2, X3, Y1, Y2, Y3}		{0.28,0.5,0.5,0.33,0.33,0.4}					v k

damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power. 4. Measured with conformance test signal at receiver input for BER = 1×10^{-12} .

5. Stressed eye closure and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

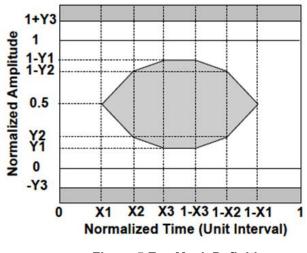
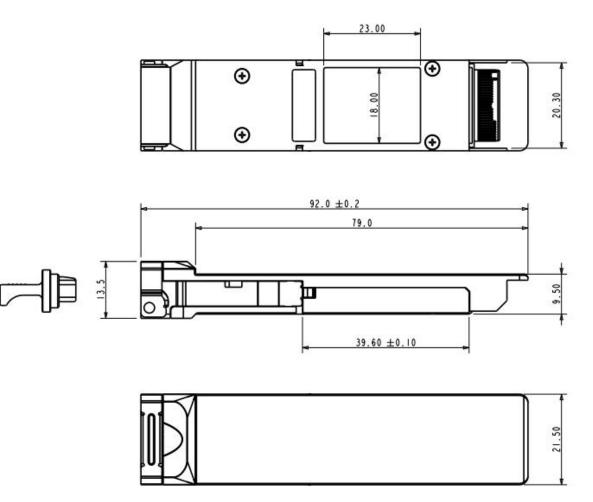


Figure 5.Eye Mask Definition

Digital Diagnostic Functions (Optional)

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8436.


Parameter	Symbol	Min	Max	Units	Notes	
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temperature range	
Supply voltage monitor absolute error	DMI_VCC	-0.15	0.15	V	Over full operating range	
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1	
Channel Bias current monitor	DMI_Ibias_Ch	-10%	10%	mA	Ch1~Ch4	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1	

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Mechanical Dimensions

Figure 6.Mechanical Outline

ESD

This transceiver is specified as ESD threshold 2kV for all electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Part Number Ordering Information

GF4-M101-SR4C	100GE/OTU4 CFP4 SR4, 112Gb/s, up to reach 70m on OM3 MMF and 100m on OM4 MMF
---------------	--

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: sales@gigalight.com

Web : https://www.gigalight.com/