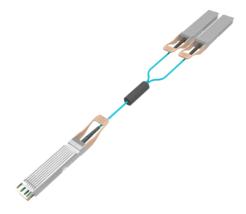
Optical Interconnection Design Innovator

# 800G OSFP to 2x400G OSFP-RHS AOC Optical Transceiver Module P/N: GOO2-MDO801-XXXC

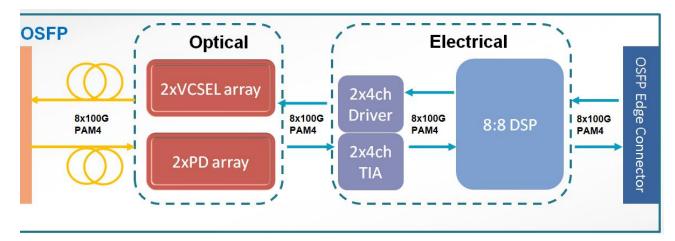
#### **Features**


- ✓ Hot-plug OSFP and OSFP-RHS form factor
- ✓ Transmission data rate up to 106.25G per channel
- √ 8x106.25Gbps PAM4 transmitter and PAM4 receiver
- √ 4 channels 850nm VCSEL array and PIN photo detector array (The OSFP-RHS End)
- ✓ Power consumption <8W(The OSFP-RHS End)</p>
- √ 8 channels 850nm VCSEL array and PIN photo detector array (The OSFP End)
- ✓ Power consumption <14W(The OSFP End)</p>
- ✓ Compliant to OSFP MSA and CMIS
- ✓ Maximum link length of 30m on OM3 Multimode Fiber (MMF)and 50m on OM4 MMF with FEC
- ✓ Built-in digital diagnostic functions
- ✓ Operating case temperature 0°C to +70°C
- √ 3.3V power supply voltage
- √ RoHS compliant(lead free)

#### **Applications**

- ✓ IEEE 802.3db 2 x 400GBASE-SR4 Ethernet (PAM4)
- ✓ The transceiver is designed for Ethernet, Telecom and Infiniband use cases.

## **Description**


The Gigalight GOO2-MDO801-XXXC MMF Active Optical Cable is used in 8 X 100Gigabit Ethernet links over OM3/OM4 multimode fiber. The OSFP port has integrate 8 independent transmit and receive channels, each capable of 106.25Gb/s PAM4 operation for an aggregate data rate of 425Gb/s, while the OSFP-RHS port has integrate 4 independent transmit and receive channels, which provides increased port density and total system cost savings for switches and routers, etc. It is compliant with IEEE 802.3db, IEEE 802.3ck and OSFP MSA. This module incorporates Gigalight Technologies proven



Optical Interconnection Design Innovator

Gigalight

circuit and VCSEL technology to provide reliable long life, high performance, and consistent service.



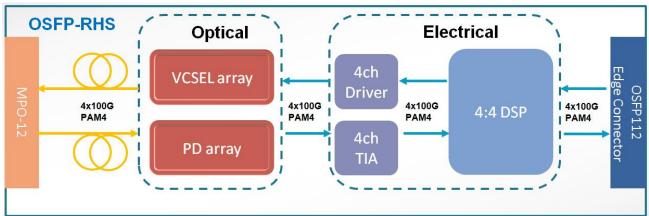



Figure 1. Module Block Diagram

## **Absolute Maximum Ratings**

| Parameter                  | Symbol | Min  | Max     | Unit |
|----------------------------|--------|------|---------|------|
| Supply Voltage             | Vcc    | -0.3 | 3.6     | V    |
| Input Voltage              | Vin    | -0.3 | Vcc+0.3 | V    |
| Storage Temperature        | Tst    | -20  | 85      | °C   |
| Case Operating Temperature | Тор    | 0    | 70      | °C   |
| Humidity(non-condensing)   | Rh     | 5    | 95      | %    |

## **Recommended Operating Conditions**

| Parameter                  | Symbol | Min  | Typical | Max  | Unit |
|----------------------------|--------|------|---------|------|------|
| Supply Voltage             | Vcc    | 3.13 | 3.3     | 3.47 | V    |
| Operating Case temperature | Tca    | 0    |         | 70   | °C   |
| Data Rate Per Lane         |        |      | 106.25  |      | Gbps |



| www.gigalight.com                   | Optical Interce | onnection Desig | n Innovator |    |   |
|-------------------------------------|-----------------|-----------------|-------------|----|---|
| Humidity                            | Rh              | 5               |             | 85 | % |
| Power Dissipation(The OSFP-RHS End) | Pm              |                 | 7.5         | 8  | W |
| Power Dissipation(The OSFP End)     | Pm              |                 | 13.5        | 14 | W |

## **Electrical Specifications**

| Parameter                            | Symbol          | Min                  | Typical | Max             | Unit  |
|--------------------------------------|-----------------|----------------------|---------|-----------------|-------|
| Differential input impedance         | Zin             | 90                   | 100     | 110             | ohm   |
| Differential Output impedance        | Zout            | 90                   | 100     | 110             | ohm   |
| Differential input voltage amplitude | ΔVin            | 400                  |         | 900             | mVp-p |
| Differential output voltage          | ΔVout           |                      |         | 850             | mVp-p |
| Bit Error Rate                       | BER             |                      |         | 2.4E-4          | -     |
| Input Logic Level High               | V <sub>IH</sub> | 2.0                  |         | Vcc             | V     |
| Input Logic Level Low                | V <sub>IL</sub> | 0                    |         | 0.8             | V     |
| Output Logic Level High              | V <sub>OH</sub> | V <sub>cc</sub> -0.5 |         | V <sub>cc</sub> | V     |
| Output Logic Level Low               | V <sub>OL</sub> | 0                    |         | 0.4             | V     |
| Input Logic Level High               | V <sub>IH</sub> | 2.0                  |         | Vcc             | V     |

#### Note:

- 1. BER=2.4E-4; PRBS31Q@53.125GBd. Pre-FEC
- 2. Differential input voltage amplitude is measured between TxnP and TxnN.
- 3. Differential output voltage amplitude is measured between RxnP and RxnN.

## **Optical Characteristics**

## **Table 3 - Optical Characteristics**

| Parameter                                                | Symbol | Min  | Typical | Max  | Unit | Notes |  |  |
|----------------------------------------------------------|--------|------|---------|------|------|-------|--|--|
| Transmitter                                              |        |      |         |      |      |       |  |  |
| Centre Wavelength                                        | λς     | 842  | 850     | 948  | nm   | -     |  |  |
| RMS spectral width                                       | Δλ     | -    | -       | 0.65 | nm   | -     |  |  |
| Average launch power, each lane                          | Pout   | -4.6 | -       | 5.5  | dBm  | -     |  |  |
| Optical Modulation<br>Amplitude<br>(OMAouter), each lane | OMA    | -2.6 |         | 4    | dBm  | -     |  |  |



Optical Interconnection Design Innovator

| TDECQ                |                      |                                                   | 4.4                                                             | dB     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|----------------------|---------------------------------------------------|-----------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ER                   | 2.5                  | -                                                 | -                                                               | dB     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |                      |                                                   | -30                                                             | dB     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | Receive              | r                                                 |                                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| λς                   | 842                  | 850                                               | 948                                                             | nm     | ı -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RXsen 4.4,TEC        |                      | max (-<br>4.4,TECQ-<br>6.2)                       | - dBr                                                           | n 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SRS                  |                      |                                                   | -1.8                                                            | dBr    | n 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |                      |                                                   | 5.5 dl                                                          |        | n -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | -6.3                 |                                                   |                                                                 | dBr    | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Receiver Reflectance |                      |                                                   | -15                                                             | dB     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LOSA                 | -15                  |                                                   | -8.5                                                            | dBr    | n -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LOSD                 |                      |                                                   | -6.5                                                            | dBr    | n -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| lysteresis LOSH 0.5  |                      | dB                                                | -                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | RXsen SRS  LOSA LOSD | Receive  λc 842  RXsen  SRS  -6.3  LOSA -15  LOSD | ER 2.5 -  Receiver  λc 842 850  RXsen  SRS  -6.3  LOSA -15 LOSD | ER 2.5 | ER 2.5 dB    Receiver     λc 842 850 948 nm     RXsen   4.4,TECQ- 6.2) dBr     SRS -1.8 dBr     -6.3 dBr     LOSA -15 -8.5 dBr     LOSD -6.5 dBr     LOSD -6.5 dBr     LOSD -6.5 dBr     -30 dBr |

#### Note:

- 1. Measured with conformance test signal at TP3 for BER = 2.4E-4 Pre-FEC.
- 2. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

## **Digital Diagnostic Specification**

| Parameter                               | Symbol    | Min  | Typical | Max  | Units        | Notes                |
|-----------------------------------------|-----------|------|---------|------|--------------|----------------------|
| Transceiver Case<br>Temperature         | DMI_Temp  | -3   |         | +3   | $^{\circ}$ C | Over operating temp  |
| Supply voltage monitor absolute error   | DMI_VCC   | -0.1 |         | 0.1  | V            | Full operating range |
| Channel RX power monitor absolute error | DMI_RX    | -2   |         | +2   | dB           | Per channel          |
| Channel Bias current monitor            | DMI_Ibias | -10% |         | +10% | mA           | Per channel          |



Optical Interconnection Design Innovator

|  | Channel TX power monitor absolute error | DMI_TX | -2 |  | +2 | dB | Per channel |
|--|-----------------------------------------|--------|----|--|----|----|-------------|
|--|-----------------------------------------|--------|----|--|----|----|-------------|

## **Pin Description**

| Pin | Symbol    | Description                     | Logic       | Direction       |
|-----|-----------|---------------------------------|-------------|-----------------|
| 1   | GND       | Ground                          |             |                 |
| 2   | TX2p      | Transmitter Data Non- Inverted  | CML-I       | Input from Host |
| 3   | TX2n      | Transmitter Data Inverted       | CML-I       | Input from Host |
| 4   | GND       | Ground                          |             |                 |
| 5   | TX4p      | Transmitter Data Non- Inverted  | CML-I       | Input from Host |
| 6   | TX4n      | Transmitter Data Inverted       | CML-I       | Input from Host |
| 7   | GND       | Ground                          |             |                 |
| 8   | TX6p      | Transmitter Data Non- Inverted  | CML-I       | Input from Host |
| 9   | TX6n      | Transmitter Data Inverted       | CML-I       | Input from Host |
| 10  | GND       | Ground                          |             |                 |
| 11  | TX8p      | Transmitter Data Non- Inverted  | CML-I       | Input from Host |
| 12  | TX8n      | Transmitter Data Inverted       | CML-I       | Input from Host |
| 13  | GND       | Ground                          |             |                 |
| 14  | SCL       | 2-wire Serial interface clock   | LVCMOS-I/O  | Bi- directional |
| 15  | VCC       | +3.3V Power                     |             | Power from Host |
| 16  | VCC       | +3.3V Power                     |             | Power from Host |
| 17  | LPWn/PRSn | Low-Power Mode / Module Present | Multi-Level | Bi- directional |
| 18  | GND       | Ground                          |             |                 |
| 19  | RX7n      | Receiver Data Inverted          | CML-O       | Output to Host  |
| 20  | RX7p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  |
| 21  | GND       | Ground                          |             |                 |
| 22  | RX5n      | Receiver Data Inverted          | CML-O       | Output to Host  |
| 23  | RX5p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  |
| 24  | GND       | Ground                          |             |                 |
| 25  | RX3n      | Receiver Data Inverted          | CML-O       | Output to Host  |
| 26  | RX3p      | Receiver Data Non-Inverted      | CML-O       | Output to Host  |
| 27  | GND       | Ground                          |             |                 |
| 28  | RX1n      | Receiver Data Inverted          | CML-O       | Output to Host  |



Optical Interconnection Design Innovator

| -  | mm.gigungin.com | 17/1                            |             | 3               |
|----|-----------------|---------------------------------|-------------|-----------------|
| 29 | RX1p            | Receiver Data Non-Inverted      | CML-O       | Output to Host  |
| 30 | GND             | Ground                          |             |                 |
| 31 | GND             | Ground                          |             |                 |
| 32 | RX2p            | Receiver Data Non-Inverted      | CML-O       | Output to Host  |
| 33 | RX2n            | Receiver Data Inverted          | CML-O       | Output to Host  |
| 34 | GND             | Ground                          |             |                 |
| 35 | RX4p            | Receiver Data Non-Inverted      | CML-O       | Output to Host  |
| 36 | RX4n            | Receiver Data Inverted          | CML-O       | Output to Host  |
| 37 | GND             | Ground                          |             |                 |
| 38 | RX6p            | Receiver Data Non-Inverted      | CML-O       | Output to Host  |
| 39 | RX6n            | Receiver Data Inverted          | CML-O       | Output to Host  |
| 40 | GND             | Ground                          |             |                 |
| 41 | RX8p            | Receiver Data Non-Inverted      | CML-O       | Output to Host  |
| 42 | RX8n            | Receiver Data Inverted          | CML-O       | Output to Host  |
| 43 | GND             | Ground                          |             |                 |
| 44 | INT/RSTn        | Module Interrupt / Module Reset | Multi-Level | Bi- directional |
| 45 | VCC             | +3.3V Power                     |             | Power from Host |
| 46 | VCC             | +3.3V Power                     |             | Power from Host |
| 47 | SDA             | 2-wire Serial interface data    | LVCMOS-I/O  | Bi- directional |
| 48 | GND             | Ground                          |             |                 |
| 49 | TX7n            | Transmitter Data Inverted       | CML-I       | Input           |
| 50 | TX7p            | Transmitter Data Non- Inverted  | CML-I       | Input from Host |
| 51 | GND             | Ground                          |             |                 |
| 52 | TX5n            | Transmitter Data Inverted       | CML-I       | Input from Host |
| 53 | TX5p            | Transmitter Data Non- Inverted  | CML-I       | Input from Host |
| 54 | GND             | Ground                          |             |                 |
| 55 | TX3n            | Transmitter Data Inverted       | CML-I       | Input from Host |
| 56 | TX3p            | Transmitter Data Non- Inverted  | CML-I       | Input from Host |
| 57 | GND             | Ground                          |             |                 |
| 58 | TX1n            | Transmitter Data Inverted       | CML-I       | Input from Host |
| 59 | TX1p            | Transmitter Data Non- Inverted  | CML-I       | Input from Host |
| 60 | GND             | Ground                          |             |                 |
|    |                 | •                               |             | ·               |

Optical Interconnection Design Innovator

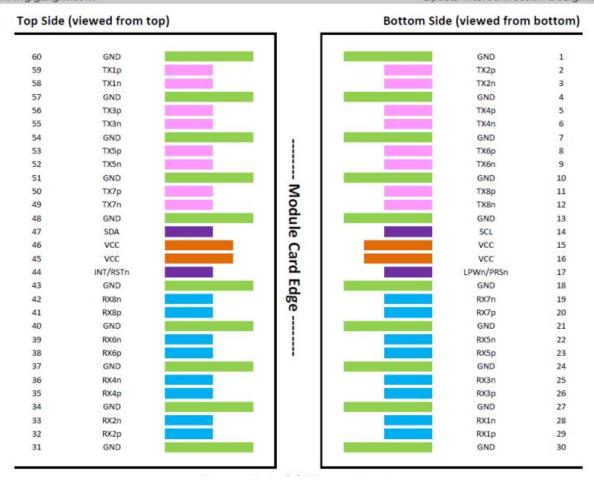
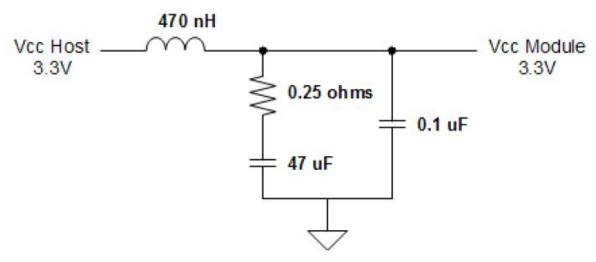



Figure 2. Electrical Pin-out Details


## **OSFP Control pins**

| Name      | Function      | Description                                                                                                                                                                               |
|-----------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LPWn/PRSn | Input/output  | Multi-level signal for low power control from host to module and module presence indication from module to host. This signal requires the circuit as described in the OSFP Specification. |
| INT/RSTn  | Input,/output | Multi-level signal for interrupt request from module to host and reset control from host to module. This signal requires the circuit as described in the OSFP Specification.              |

| Name | Function | Description                                                            |
|------|----------|------------------------------------------------------------------------|
| SCL  | BiDir    | 2-wire serial clock signal. Requires pull-up resistor to 3.3V on host. |
| SDA  | Bidir    | 2-wire serial data signal. Requires pull-up resistor to 3.3V on host.  |



#### **Power Supply Filtering**



The host board should use the power supply filtering shown in Figure 3.

Figure 3. Host Board Power Supply Filtering

#### DIAGNOSTIC MONITORING INTERFACE

Digital diagnostics monitoring function is available on all Gigalight OSFP products. A 2-wire serial interface provides user to contact with module.

#### **Memory Structure and Mapping**

This limits the management memory that can be directly accessed by the host to 256 bytes, which is divided in Lower Memory (addresses 00h through 7Fh) and Upper Memory (addresses 80h through FFh).

A larger addressable management memory is required for all but the most basic modules. This is supported by a structure of 128-byte pages, together with a mechanism for dynamically mapping any of the 128-byte pages from a larger internal management memory space into Upper Memory the host addressable space.

The addressing structure of the additional internal management memory is shown in Figure 4 The management memory inside the module is arranged as a unique and always host accessible address space of 128 bytes (Lower Memory) and as multiple upper address subspaces of 128 bytes each (Pages), only one of which is selected as host visible in Upper Memory. A second level of Page selection is possible for Pages for which several instances exist (e.g. where a bank of pages with the same Page number exists).

This structure supports a flat 256 byte memory for passive copper modules and permits timely access to

Optical Interconnection Design Innovator

addresses in the Lower Memory, e.g. Flags and Monitors. Less time critical entries, e.g. serial ID information and threshold settings, are available with the Page Select function in the Lower Page. For more complex modules which require a larger amount of management memory the host needs to use dynamic mapping of the various Pages into the host addressable Upper Memory address space, whenever needed.

**Note**: The management memory map has been designed largely after the QSFP memory map. This memory map has been changed in order to accommodate 8 electrical lanes and to limit the required memory space. The single address approach is used as found in QSFP. Paging is used in order to enable time critical interactions between host and module.

#### **Supported Pages**

A basic 256 byte subset of the Management Memory Map is mandatory for all CMIS compliant devices. Other parts are only available for paged memory modules, or when advertised by the module. See CMIS V4.0 for details regarding the advertisement of supported management memory spaces.

In particular, support of the Lower Memory and of Page 00h is required for all modules, including passive copper cables. These pages are therefore always implemented. Additional support for Pages 01h, 02h and bank 0 of Pages 10h and 11h is required for all paged memory modules.

Bank 0 of pages 10h-1Fh, provides lane-specific registers for the first 8 lanes, and each additional bank provides support for additional 8 lanes. Note, however, that the allocation of information over the banks may be page specific and may not to be related to grouping data for 8 lanes.

The structure allows address space expansion for certain types of modules by allocating additional Pages. Moreover, additional banks of pages.

www.gigalight.com Optical Interconnection Design Innovator

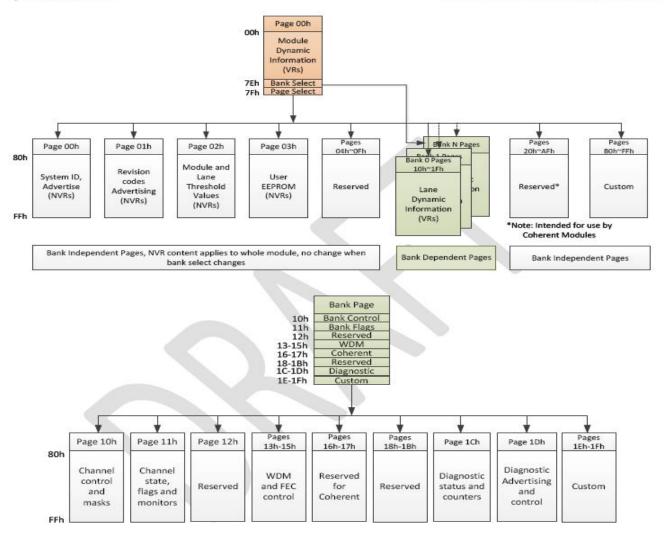



Figure 4. OSFP Memory Map

## **Mechanical Dimensions(mm)**



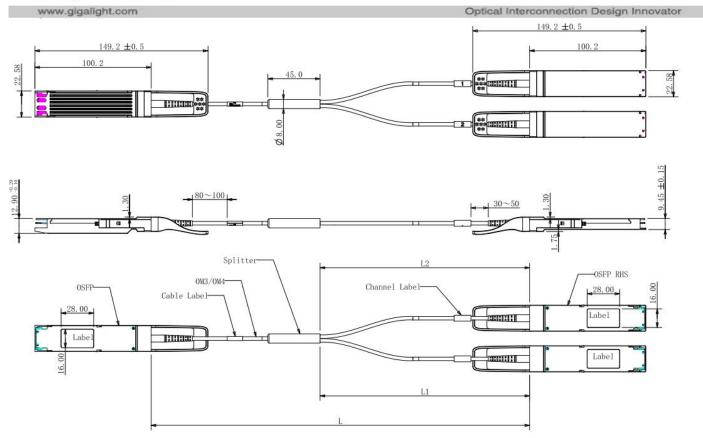



Figure 5. Mechanical Specifications

## **Regulatory Compliance**

Gigaligth GOO2-MDO801-XXXC transceivers are Class 1 Laser Products. They meet the requirements of the following standards:

| Feature                  | Standard                                                                                                             |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|
| Laser Safety             | IEC 60825-1:2014 (3 <sup>rd</sup> Edition)<br>IEC 60825-2:2004/AMD2:2010<br>EN 60825-1-2014<br>EN 60825-2:2004+A1+A2 |
| Electrical Safety        | EN 62368-1: 2014<br>IEC 62368-1:2014<br>UL 62368-1:2014                                                              |
| Environmental protection | Directive 2011/65/EU with amendment(EU)2015/863                                                                      |
| CE EMC                   | EN55032: 2015<br>EN55035: 2017<br>EN61000-3-2:2014<br>EN61000-3-3:2013                                               |
| FCC                      | FCC Part 15, Subpart B<br>ANSI C63.4-2014                                                                            |

#### References

- 1. OSFP Module Specification Rev5 0
- 2. CMIS V4.0
- 3. IEEE 802.3db 400GBASE-VR4 Ethernet (PAM4)
- 4. IEEE802.3ck



Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.

## **Ordering information**

| Part Number      | Product Description                                                |
|------------------|--------------------------------------------------------------------|
|                  | 800G OSFP - 2x400G OSFP-RHS AOC transceiver, 850nm, up to 50m with |
| GOO2-MDO801-XXXC | OM4,                                                               |
|                  | XXX: 001-1m, 005-5m, 007-7m, 020-20m, 030-30m, 050-50m             |

## **Important Notice**

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

E-mail: <a href="mailto:sales@gigalight.com">sales@gigalight.com</a>
Official Site: <a href="mailto:www.gigalight.com">www.gigalight.com</a>

#### **Revision History**

| Revision | Date       | Description      |
|----------|------------|------------------|
| V0       | Aug-7-2024 | Advance Release. |