www.gigalight.com

Optical Interconnection Design Innovator

100G QSFP28 Direct Attach Passive Copper Cables GQS-PC101-xxC

Features

- 4-channel full-duplex passive copper cable
- SFF-8665 compliant QSFP28 connectors
- SFF-8636 compliant I2C management interface
- IEEE 802.3bj 100GBASE-CR4 compliant
- Data rate up to 100Gbps (4x 25Gbps)
- Copper link length up to 3m (passive limiting)
- Excellent signal integrity, low insertion loss and low crosstalk
- Operating case temperature range: 0°C to +70°C
- Single 3.3V supply voltage
- ROHS compliant

- 100G Ethernet 100GBASE-CR4
- InfiniBand 4x EDR
- SAS, servers, hubs, switches and routers

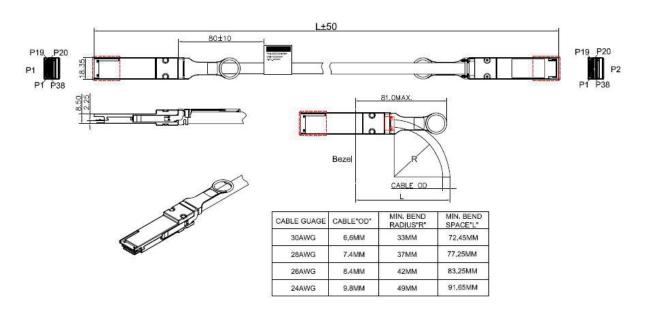
Product Description

The 100G QSFP28 direct attach passive copper cable assemblies are a high-performance and cost-effective I/O solution for LAN, HPC and SAN applications. The high speed cable assemblies meet and exceed 100G Ethernet, InfiniBand EDR and temperature requirements for performance and reliability. The cables are compliant with SFF-8436 specifications and provide connectivity between devices using QSFP28 ports.

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Storage Ambient Temperature		-40		+85	°C
Operating Case Temperature	Тс	0		+70	°C
Power Supply Voltage	V _{CC3}	3.14	3.3	3.47	V
Data Rate Per Lane		1		25.78	Gb/s

Optical Interconnection Design Innovator


High Speed Characteristics

Parameter	Symbo	Min	Typical	Max	Uni	Note
Differential Impedance	RIN,P-	90		110	Ω	
Insertion loss	SDD21			22.48	dB	At 12.8906 GHz
Differential Return Loss	SDD11			See 1	dB	At 0.05 to 4.1 GHz
	SDD22			See 2	dB	At 4.1 to 19 GHz
Common-mode to common-mode	SCC11	2			dB	At 0.2 to 19 GHz
output return loss	SCC22	2				
Differential to common-mode	SCD11			See 3	٩D	At 0.01 to 12.89
return loss	SCD22			See 4	dB	At 12.89 to 19 GHz
	SCD21			10	dB	At 0.01 to 12.89
Differential to common Mode Conversion Loss				See 5		At 12.89 to 15.7
CONVENSION LOSS				6.3		At 15.7 to 19 GHz
Channel Operating Margin	СОМ	3			dB	

Notes:

- 1. Reflection Coefficient given by equation SDD11(dB) < 16.5 2 × SQRT(f), with f in GHz
- 2. Reflection Coefficient given by equation SDD11(dB) < $10.66 14 \times log10(f/5.5)$, with f in GHz
- 3. Reflection Coefficient given by equation SCD11(dB) < 22 (20/25.78)*f, with f in GHz
- 4. Reflection Coefficient given by equation SCD11(dB) < 15 (6/25.78)*f, with f in GHz
- 5. Reflection Coefficient given by equation SCD21(dB) < 27 (29/22)*f, with f in GHz

Mechanical Dimensions

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

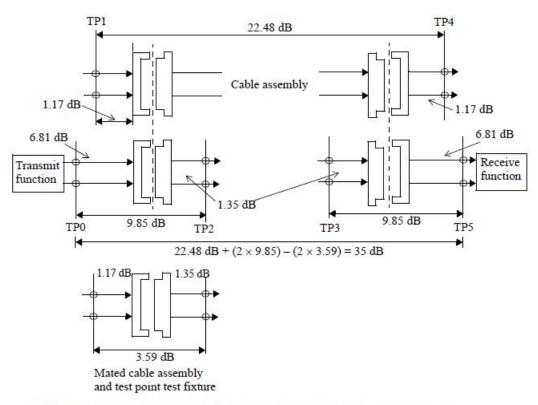
Optical Interconnection Design Innovator

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Notes	
1		GND	Ground	1	
2	CML-I	Tx2n	Transmitter Inverted Data Input		
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input		
4		GND	Ground	1	
5	CML-I	Tx4n	Transmitter Inverted Data Input		
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input		
7		GND	Ground	1	
8	LVTTL-I	ModSelL	Module Select		
9	LVTTL-I	ResetL	Module Reset		
10		Vcc Rx	+3.3V Power Supply Receiver	2	
11	LVCMOSI/O	SCL	2-wire serial interface clock		
12	LVCMOSI/O	SDA	2-wire serial interface data		
13		GND	Ground	1	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output		
15	CML-O	Rx3n	Receiver Inverted Data Output		
16		GND	Ground	1	
17	CML-O	Rxlp	Receiver Non-Inverted Data Output		
18	CML-O	Rxln	Receiver Inverted Data Output		
19		GND	Ground	1	
20		GND	Ground	1	
21	CML-O	Rx2n	Receiver Inverted Data Output		
22	CML-O	Rx2p	Receiver Non-Inverted Data Output		
23		GND	Ground	1	
24	CML-O	Rx4n	Receiver Inverted Data Output		
25	CML-O	Rx4p	Receiver Non-Inverted Data Output		
26		GND	Ground	1	
27	LVTTL-O	ModPrsL	Module Present		
28	LVTTL-O	IntL	Interrupt		
29		Vcc Tx	+3.3V Power supply transmitter	2	
30		Vccl	+3.3V Power supply	2	
31	LVTTL-I	LPMode	Low Power Mode		
32		GND	Ground	1	
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input		
34	CML-I	Tx3n	Transmitter Inverted Data Input		

www.gigalight.com

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.


Optical Interconnection Design Innovator

	2000				
35		GND	Ground	1	
36	CML-I	Txlp	Transmitter Non-Inverted Data Input		
37	CML-I	Txln	Transmitter Inverted Data Input		
38		GND	Ground	1	

Note 1: GND is the symbol for signal and supply (power) common for the QSFP+ module. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

Note 2: Vcc Rx, Vccl and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in Table 6. Recommended host board power supply filtering is shown in Figure 4. Vcc Rx Vccl and Vcc Tx may be internally connected within the QSFP+ module in any combination. The connector pins are each rated for a maximum current of 500mA.

Channel insertion loss budget

NOTE—The connector insertion loss is 1.07 dB for the mated test fixture. The host connector is allocated 0.62 dB of additional margin.

Figure 92A-2-35 dB channel insertion loss budget at 12.8906 GHz

Page 4 of 5 7/ 2017

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

Ordering information

Part Number	GQS-PC101-xxC			
Length (meter)	1	2	3	
American Wire Gauge (AWG)	30	30	26	

Note: diameter and distance can be customized.

Example:

GQS-PC101-01C: AWG30, 1 meter; GQS-PC101-02C: AWG30, 2 meters; GQS-PC101-03C: AWG26, 3 meters.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

Shenzhen Gigalight Technology Co., Ltd

Headquarter Address: 17F, Zhongtai Tiancheng, Dongbin Rd, Nanshan Shenzhen, Guangdong, Province, China, Zip Code 518067

Tel: +86-755-26734300 Fax: +86-755-26738181

Email: sales@gigalight.com/ https://www.gigalight.com/