

40G QSFP+ Direct Attach Passive Copper Cables GQS-PC560-xxC

Features

- 4-channel full-duplex passive copper cable
- SFF-8436 compliant QSFP+ connectors
- SFF-8636 compliant I2C management interface
- Data rate up to 56Gbps (4x 14Gbps)
- Copper link length up to 5m (passive limiting)
- Low power consumption: 0.02W (typ.)
- Excellent signal integrity and low insertion loss
- Operating case temperature range: 0°C to +70°C
- Single 3.3V supply voltage

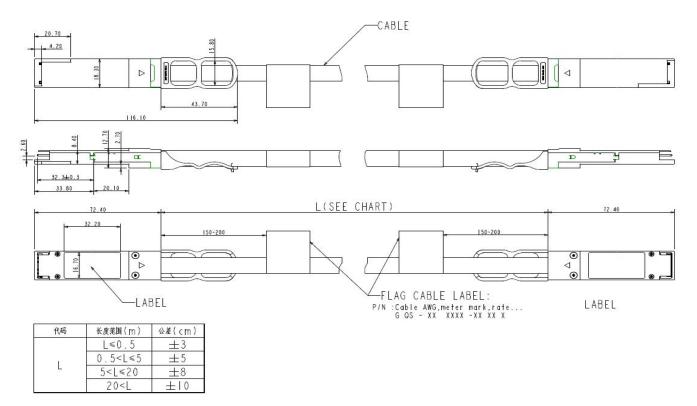
Applications

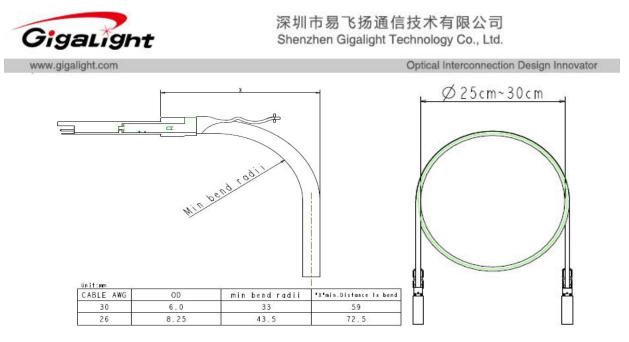
- InfiniBand 4x FDR
- SAS, servers, hubs, switches and routers

Standards Compliance

- IEEE 802.3ba
- SFF-8436
- InfiniBand FDR
- QSFP+ MSA
- RoHS Compliant

Product Description

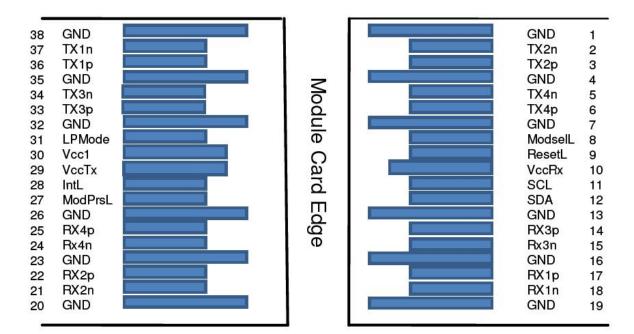

The 56G QSFP+ passive copper cable assemblies are a high-performance and cost-effective I/O solution for 56G LAN, HPC and SAN applications. The QSFP+ passive copper cables are compliant with SFF-8436 and InfiniBand FDR. They offer a low power consumption solution for short reach connection applications. Each lane of the cable is capable of transmitting data at rates up to 14Gb/s, providing an aggregated rate of 56Gb/s.



Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Storage Ambient Temperature		-40		+85	°C
Operating Case Temperature	Тс	0		+70	°C
Power Supply Voltage	V _{CC3}	3.14	3.3	3.47	V
Power Dissipation	PD			0.02	W

Mechanical Dimensions



QSFP+ Host Board Schematic for passive copper cables

Pin Descriptions

Top Side Viewed From Top

Bottom Side Viewed From Bottom

Pin	Logic	Symbol	Name/Description	Notes
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		Vcc Rx	+3.3V Power Supply Receiver	2
11	LVCMOSI/O	SCL	2-wire serial interface clock	
12	LVCMOSI/O	SDA	2-wire serial interface data	
13		GND	Ground	1

深圳市易飞扬通信技术有限公司 Shenzhen Gigalight Technology Co., Ltd.

www.gigalight.com

Optical Interconnection Design Innovator

	www.gigaiignt.com		Opucal Interconnection Design Innovator		
14	CML-O	Rx3p	Receiver Non-Inverted Data Output		
15	CML-O	Rx3n	Receiver Inverted Data Output		
16		GND	Ground	1	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output		
18	CML-O	Rx1n	Receiver Inverted Data Output		
19		GND	Ground	1	
20		GND	Ground	1	
21	CML-O	Rx2n	Receiver Inverted Data Output		
22	CML-O	Rx2p	Receiver Non-Inverted Data Output		
23		GND	Ground	1	
24	CML-O	Rx4n	Receiver Inverted Data Output		
25	CML-O	Rx4p	Receiver Non-Inverted Data Output		
26		GND	Ground	1	
27	LVTTL-O	ModPrsL	Module Present		
28	LVTTL-O	IntL	Interrupt		
29		Vcc Tx	+3.3V Power supply transmitter	2	
30		Vccl	+3.3V Power supply	2	
31	LVTTL-I	LPMode	Low Power Mode		
32		GND	Ground	1	
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input		
34	CML-I	Tx3n	Transmitter Inverted Data Input		
35		GND	Ground	1	
36	CML-I	Тх1р	Transmitter Non-Inverted Data Input		
37	CML-I	Txln	Transmitter Inverted Data Input		
38		GND	Ground	1	

Note 1: GND is the symbol for signal and supply (power) common for the QSFP+ module. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

Note 2: Vcc Rx, Vccl and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrent- ly. Requirements defined for the host side of the Host Edge Card Connector are listed in Table 6. Recommended host board power supply filtering is shown in Figure 4. Vcc Rx Vccl and Vcc Tx may be internally connected with- in the QSFP+ Module module in any combination. The connector pins are each rated for a maximum current of 500 mA.

Ordering information

Part Number	GQS-PC560-xxC					
Length (meter)	1	2	3	4	5	
American Wire Gauge (AWG)	30	30	28	26	26	

Note: diameter and distance can be customized.

Example:

GQS-PC560-01C: AWG30, 1 meter; GQS-PC560-03C: AWG28, 3 meters; GQS-PC560-05C: AWG26, 5 meters.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by GIGALIGHT before they become applicable to any particular order or contract. In accordance with the GIGALIGHT policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of GIGALIGHT or others. Further details are available from any GIGALIGHT sales representative.

Shenzhen Gigalight Technology Co., Ltd

Headquarter Address: 17F, Zhongtai Tiancheng, Dongbin Rd, Nanshan Shenzhen, Guangdong, Province, China, Zip Code 518067

Tel: +86-755-26734300 Fax: +86-755-26738181

Email: <u>sales@gigalight.com</u> https://www.gigalight.com/